26210045

MR-1 CHECK OFF LIST FOR NON-CATEGORICAL COMPANIES

ST. MARY'S HOSPITAL

350 Boulevard, PASSAIC 1. Month of DECEMBER 1, 2008 THRU DECEMBER 31, 2008 N N/A 2. Is Outlet # (8 digit) Correct? Is average Total flow-gal.day stated in space provided? N N/A 3. Is max. Total flow-gal day stated in space provided? N N/A 4. Is method used to calculate water stated? N N/A 5. N/A N 6. Are number of working days stated? Are there any parameters which have exceeded PV 7. N/A Local Limits? Is proper compliance/non-compliance statement provided? N/A 8. N/A 9. Have correct number of samples been submitted? N N/A Has PHC result been listed on MR-1 report? 10. 11. N N/A Has sample number been reported in space provided? N N/A 12. Have all regulated parameters been listed on MR-1? N N/A 13. Has sample type been stated on MR-1? 14. Have all samples been taken during this reporting period? N N/A 15. N N/A Has NJDEPE certified lab been used? Have analytical results been such 16. itsed on copies of N N/A Laboratory stationery? N/A Have results been written in space designated on MR-1? N 17. Is correct method used to preserve complete stated on MR-1? N/A 18. N N N/A 19. Has MR-1 been signed by authorized representative? Has information been submitted on proper MR-1 form? N N/A 20. N N/A 21. Remove Arsenic from report if sampling not required

MR-1 CHECK OFF LIST FOR NON-CATEGORICAL COMPANIES

First Reviewer: comments	on deficiencies	· .	
Date Reviewed //26/07 Date due back	Reviewer .	u dano	
Second review comments of	on deficiencies		
Date Reviewed	Date sent to user		
		en e	
Date due back	Reviewer		
			•
Date	Reviewer		

0 . * JAN 2 1 2009 PRETREATMENT MONITORING REPORT 729,300 ·× · PITAL 7 . 48= 5,455,164 ** rd, Passaic, NJ 07055 vard, Passaic, NJ 07055 5,455,164 · x 0.95= OUTLET #: 1 5,182,406.* TELEPHONE #: (973) 365-5134 Romanik 5,182,406 · ÷ OLD OUTLET DESIGNATION: 26210003 : 26210045 31 .= 167,175.* **Maximum** Average)RD Regulated Flow-gal/day N/A **END** 183,892 167,174 167 , 175 · x Total Flow-gal/day 2008 31 DAY YR. 1 - 1 = 183,893.* 31 days. ings Divided by 0 .* #OF SAMPLE TYPE MASS LIMIT OR CONCENTRATION **SAMPLES** COMP/GRAB **MAXIMUM UNITS** AVERAGE 0.073 0.073 ppm ment COMP 1 Zinc 1.67 1.67 ppm PVSC Form MR-1 Rev:4 6/87 P1

JAN	2	1	2009
JAW			2000

Certification of Non-use if applicable (use additional sheets): N/A

Compliance or non-compliance statement with compliance schedule (use additional sheets if necessary for every parameter used. PBI Regional Medical Center Hospital is in compliance with the PVSC local limits

Explain Method for preserving samples: <u>Laboratory preserved with 5ml nitric acid to a pH of <2</u>

I certify under penalty of law that this document and attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

403.6(a)(2)(ii) revised by 53 FR 40610, October 17, 1988

Signature of Principal
Executive or Authorized Agent

Joseph W. Pilewski

<u>Vice President, Enviro-Sciences (OF DELAWARE), Inc</u>
Type Name and Title

19-Jan-09 Date

PVSC Form MR-1 Rev:5 3/91 P2

Water Discharge Calculation Sheet

ST. MARY'S HOSPITAL

(PBI)

DECEMBER

2008

Total water used from meter reading (Cubic feet)	729,300
x 7.48 (gallons / cubic foo	t)
Total Usage (Gallons)	5,455,164
Evaporation (Gallons) 5% evaporation *	272,758
Volume Discharged (Gallons)	5,182,406
Volume Discharged For Month	· · · · · · · · · · · · · · · · · · ·
Daily Average Discharge (Gallons)	167,174
Daily Maximum Discharge (Gallons)	183,892

12 31

^{*} NOTE: In the months of January, February and March the PVSC DOES NOT ALLOW a reduction for evaporation.

70027224 <u>Meter 1</u>	70027225 <u>Meter 2</u>	70029946 <u>Meter 3</u>	60144298 <u>Meter 4</u>	<u>Total</u>	<u>x 100</u>	<u>x 7.48</u>
1,900	4,191	952	250	7,293	729,300	5,455,164
<u>R</u> Meter 1	<u>teading Date</u> 1/12/09 12/11/08	C-L	CF1 1,634.00 234.00 1,400.00 x 1 1,400.00	CF2 1,598.00 1,593.00 5.00 x 100 500.00	1,900.00	100 cu.ft.)
Meter 2	1/12/09 12/11/08	C-L	8,024.00 6,533.00 1,491.00 x 1 1,491.00	1,373.00 1,346.00 27.00 <u>x 100</u> 2,700.00	4,191.00	
Meter 3	1/12/09 12/11/08	C-L	7,552.00 6,730.00 822.00 x 1 822.00	7,779.00 <u>7,766.00</u> 13.00 <u>x 10</u> 130.00	952.00	
Meter 4	1/12/09 12/11/08	C-L	2,419.00 2,394.00 25.00 x 10 250.00		250.00	

Month Last day

ANALYTICAL DATA REPORT

ESI, INC. 111 Howard Blvd Suite 108 Mount Arlington, NJ 07856

Project Name: ST. MARY'S HOSPITAL (PBI) - R8MM

IAL Case Number: E08-13753

These data have been reviewed and accepted by:

Michael H. Lefian, Ph.D.

Laboratory Director

Sample Summary

IAL Case No.

E08-13753

Client ESI, INC.

Project ST. MARY'S HOSPITAL (PBI) - R8MM

Received On 12/3/2008@13:00

					<u># of</u>
Lab ID	Client Sample ID	Depth Top/Bottom	Sampling Time	<u>Matrix</u>	<u>Container</u>
13753-001	SMP-1208	n/a	12/3/2008@10:00	Aqueous	1

TABLE OF CONTENTS

	÷ *	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List		1 2 3
Summary Report		4
Analytical Results Metals		5
Methodology Summary *		
Quality Control Metals Method Blank Results Summary Calibration Summary Spike Sample Results Summary Duplicate Sample Results Summary		6
Sample Tracking Chains of Custody Laboratory Chronicle		16 19

^{*} Methodology is included in the IAL Project Information Page

MATRIX QUALIFIERS

- **A** Indicates the sample is an Aqueous matrix.
- **O** Indicates the sample is an Oil matrix.
- **S** Indicates the sample is a <u>S</u>oil, <u>S</u>ludge or <u>S</u>ediment matrix.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to Matrix Interferences.
- **NA** <u>N</u>ot <u>Applicable</u>.
- ND Indicates the compound was analyzed for but Not Detected at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received one (1) aqueous sample(s) from ESI, INC. (Project: ST. MARY'S HOSPITAL (PBI) - R8MM) on December 3, 2008 for the analysis of:

- (1) Metal Copper
- (1) Metal Zinc

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

12) 16 / 08

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E08-13753

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	✓
2.	Table of Contents.	
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	✓
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	✓
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	_
7.	Methodology Summary.	✓
8.	Laboratory Chronicle and Holding Time Check.	
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	✓
11.	Lab certified by NJDEP for parameters or appropriate category of	
	parameters or a member of the USEPA CLP.	
12.	NonConformance Summary.	
	QC Reviewed by	16/08

SUMMARY REPORT Client: ESI, INC.

Project: ST. MARY'S HOSPITAL (PBI) - R8MM

Lab Case No.: E08-13753

Lab ID: 13753-001 Client ID: **SMP-1208** Matrix: Aqueous Sampled Date 12/3/08 PARAMETER(Units) Conc Q MDL (mg/L-ppm) Metals (Units) 0.112 0.008 Copper 0.073 0.008 Zinc

METALS

Client/Project: ESI/ST. MARY'S HOSPITAL (PBI) - R8MM

Lab ID: E08-13753-001 Client ID: SMP-1208

Date Received: 12/03/08 13:00 Matrix-Units: Aqueous-mg/L (ppm)

% Moisture: 100 Batch #: 534

				Date	
Compound	Result Q	DF	MDL	Analyzed	Method
Copper	0.112	1	0.008	12/04/08	200.8
Zinc	0.073	1	0.008	12/04/08	200.8

· E08-13753

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL **BLANK 1 RESULTS SUMMARY**

Batch (Page) #:

534

Associated Lab

13566, 13625, 13661, 13698, 13751, 13752, 13753, 13754, 13666, 13667

Case for Blank 1:

13716, 13717, 13718, 13719, 13720

Matrix: Aqueous	Unit: ppb (µg/L)	Method: 200.8
	SAMPLE	REAGENT
ANALYTE	MDL	BLANK
Arsenic	2.00	ND
Cadmium	1.00	ND
Chromium	8.00	ND
Copper	8.00	ND
Lead	2.00	ND
Manganese	4.00	ND
Mercury	0.500	ND
Nickel	4.00	ND
Silver	2.00	ND
Zinc	8.00	ND .

Associated Sample for Blank 1:

13566-001; 13625-001; 13661-001~003; 13698-001

13751-001; 13752-001; 13753-001; 13754-001; 13666-006

13667-001~004; 13716-002; 13717-002; 13718-001

13719-001; 13720-001

· E08-13753

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

INITIAL & CONTINUING CALIBRATION BLANKS VERIFICATION

Batch (Page) #:

534

Lab Case:

13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Matrix: Aqueous

Method: 200.8

Concentration/Units: ppb (µg/L)

ANALYTE	INST. MDL	ICB	ССВ	ССВ	ССВ	ССВ	CCB
Arsenic	0.500	ND	ND	ND	ND	ND	ND
Cadmium	0.250	ND	ND	ND	ND	ND	ND
Chromium	2.00	ND	ND	ND	ND	ND	ND
Copper	2.00	ND	ND	ND	ND	ND	ND
Lead	0.500	ND	ND	ND	ND	ND	ND
Manganese	1.00	ND	ND	ND	ND	ND	ND
Mercury	0.250	ND	ND				
Nickel	1.00	ND	ND	ND	ND	ND	ND
Silver	0.500	ND	ND	ND	ND	ND	ND
Zinc	2.00	ND	ND	ND	ND	ND	ND

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

INITIAL & CONTINUING CALIBRATION BLANKS VERIFICATION

Batch (Page) #: 534

Lab Case: 13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Matrix: Aqueous Method: 200.8 Concentration/Units: ppb (μg/L)

ANALYTE	INST. MDL	ССВ			
Arsenic	0.500	ND			
Cadmium	0.250	ND			
Chromium	2.00	ND			
Copper	2.00	ND			
Lead	0.500	ND			
Manganese	1.00	ND			
Nickel	1.00	ND			
Silver	0.500	ND			
Zinc	2.00	ND			

' E08-13753

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

INITIAL & CONTINUING CALIBRATION VERIFICATION

Batch (Page) #: 534

Lab Case: 13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Matrix: Aqueous Method: 200.8 Units: ppb (ug/L)

	INST.	ICV & CCV	ICV		CCV		CCV		CCV	
ANALYTE	MDL	TRUE	FOUND	% R						
Arsenic	0.500	20.0	18.4	92.0	20.7	104	21.1	106	21.0	105
Cadmium	0.250	10.0	9.43	94.3	9.21	92.1	10.3	103	10.4	104
Chromium	2.00	20.0	19.1	95.5	18.0	90.0	18.9	94.5	18.8	94.0
Copper	2.00	50.0	47.9	95.8	46.1	92.2	48.3	96.6	49.2	98.4
Lead	0.500	10.0	10.1	101	9.60	96.0	10.1	101	10.2	102
Manganese	1.00	30.0	28.3	94.3	27.5	91.7	28.7	95.7	28.9	96.3
Mercury	0.250	5.00	5.41	108	5.26	105				
Nickel	1.00	80.0	73.7	92.1	73.2	91.5	75.5	94.4	75.4	94.3
Silver	0.500	20.0	19.5	97.5	18.2	91.0	19.6	98.0	18.5	92.5
Zinc	2.00	40.0	37.2	93.0	36.3	90.8	40.3	101	41.0	103

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL INITIAL & CONTINUING CALIBRATION VERIFICATION

534 Batch (Page) #:

Lab Case: 13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Units: ppb (ug/L) Method: 200.8 Matrix: Aqueous

	INST.	ICV & CCV	CCV		CCV		CCV			
ANALYTE	MDL	TRUE	FOUND	% R	FOUND	% R	FOUND	% R	FOUND	% R
	0.500	20.0	21.2	106	20.8	104	21.5	108		
Arsenic		10.0	10.1	101	10.0	100	10.1	101		
Cadmium	0.250			93.5	18.2	91.0	18.4	92.0		
Chromium	2.00	20.0	18.7		47.7	95,4	48.7	97.4		
Copper	2.00	50.0	49.0	98.0			10.5	105		
Lead	0.500	10.0	10.4	104	10.4	104				
Manganese	1.00	30.0	29.1	97.0	28.5	95.0	29.1	97.0	 -	
Nickel	1.00	80.0	75.3	94.1	73.5	91.9	76.9	96.1		
Silver	0.500	20.0	18.8	94.0	18.8	94.0	20.5	103		
Zinc	2.00	40.0	41.2	103	41.5	104	41.6	104		

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL SPIKE SAMPLE RECOVERY

Batch (Page) #:

534

Lab Case:

13566, 13625, 13661, 13698, 13751, 13752, 13753, 13754, 13666, 13667

13716, 13717, 13718, 13719, 13720

		Matrix: Aqueous Concentration/Units: ppb (µg/L)									
		TVIGGTA:	1		T T				CONTROL		
		CD 1	0/D1	SA1	SSR2	SR2	%R2	SA2	LIMIT %R		
ANALYTE_	SSR1_	SR1	%R1		442	ND	111	400	75-125		
Arsenic	385	11.8	93.3	400	439	ND	110	400	75-125		
Cadmium	357	ND	89.3	400		ND	106	400	75-125		
Chromium	365	ND	91.3	400	422		106	400	75-125		
Copper	354	ND	88.5	400	470	45.5		400	75-125		
Lead	393	2.95	97.5	400	458	2.93	114		75-125		
Manganese	886	503	95.8	400	426	ND	107	400	75-125		
Mercury	10.5	ND	105	10.0	Ì						
	387	33.0	88.5	400	422	ND	106	400	75-125		
Nickel	-	ND	87.3	400	364	ND	91.0	400	75-125		
Silver	349		90.8	400	513	49.6	116	400	75-125		
Zinc	389	25.9	90.8	1 700			1 72 -14				

SSR = Spike Sample Result

SR = Sample Result %R = Percent Recovery

SA = Spike Added

NC = Non-calculable % R; Sample concentration > 4 x Spike Concentration.

QC Sample 1 13566-001

QC Sample 1 for following samples:

13566-001; 13625-001; 13661-001~003; 13698-001

13751-001; 13752-001; 13753-001; 13754-001

QC Sample 2 13716-002

QC Sample 2 for following samples:

13666-006; 13667-001~004; 13716-002; 13717-002

13718-001; 13719-001; 13720-001

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL DUPLICATE SAMPLE RECOVERY

Batch (Page) #:

534

Lab Case:

13566, 13625, 13661, 13698, 13751, 13752, 13753, 13754, 13666, 13667

13716, 13717, 13718, 13719, 13720

	-	Matrix:	Aqueous					
	CONTROL				CONTROL			
ANALYTE	LIMIT 1	S1	D1	RPD1	LIMIT 2	S2	D2	RPD2
Arsenic	20	11.8	10.8	8.85	NA	ND	ND	NC
Cadmium	NA	ND	ND	NC	NA	ND	ND	NC
Chromium	NA	ND	ND	NC	NA	ND	ND	NC
Copper	NA	ND	ND	NC	20	45.5	45.5	0
Lead	20	2.95	2.72	8.11	20	2.93	2.68	8.91
Manganese	20	503	490	2.62	NA	ND	ND	NC
Mercury	NA NA	ND	ND	NC				
Nickel	20	33.0	30.8	6.90	NA	ND	ND	NC
Silver	NA NA	ND	ND	NC	NA	ND	ND	NC
Zinc	20	25.9	22.5	14.0	20	49.6	47.3	4.75

S1 = Sample 1

D1 = Duplicate 1

NA = Not Applicable

NC = Non-calculable RPD due to result (s) less than the detection limit.

QC Sample 1 13566-001
QC Sample 1 for following samples:

13566-001; 13625-001; 13661-001~003; 13698-001

13751-001; 13752-001; 13753-001; 13754-001

S2 = Sample 2 D2 = Duplicate 2

> QC Sample 2 13716-002 QC Sample 2 for following samples:

13666-006; 13667-001~004; 13716-002; 13717-002

13718-001; 13719-001; 13720-001

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

LABORATORY CONTROL SAMPLE

Batch (Page) #:

534

Lab Case: 13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Matrix: Aqueous

Unit: ppb (µg/L)

	<u> </u>		·					
		BSW1		BSW2				
ANALYTE	TRUE	FOUND	%R(1)	TRUE	FOUND	%R(1)		
Arsenic	400	374	93.5	400	392	98.0		
Cadmium	400	372	93.0	400	401	100		
Chromium	400	371	92.8	400	375	93.8		
Copper	400	371	92.8	400	393	98.3		
Lead	400	381	95.3	400	405	101		
Manganese	400	364	91.0	400	384	96.0		
Mercury	10.0	11.3	113					
Nickel	400	364	91.0	400	381	95.3		
Silver	400	384	96.0	400	416	104		
Zinc	400	384	96.0	400	409	102		

(1) Control Limits % Recovery = 85-115%

BSW1	BSW2
13566-001; 13625-001; 13661-001~003; 13698-001	13721-002; 13722-001; 13723-002; 13724-002~003
13751-001; 13752-001; 13753-001; 13754-001; 13666-006	13725-002; 13726-001; 13728-002; 13729-002
13667-001~004; 13716-002; 13717-002; 13718-001	13730-002; 13725-002
13719-001; 13720-001	

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

SERIAL DILUTIONS & POST SPIKES 1

Batch (Page) #:

534

Lab Case: 13566, 13625, 13661, 13698, 13751, 13752, 13753, 13754

Concentration/Units: ppb (µg/L) Matrix: Aqueous

	SERIAL DILUTION		%	POST	%	
ANALYTE	SR	SDR	Difference	SPR	SA	Recovery
Arsenic	11.8			384	400	93.1
Cadmium	ND			355	400	88.8
Chromium	ND			367	400	91.8
Copper	ND			358	400	89.5
Lead	2.95			391	400	97.0
Manganese	503	512	1.77			
Nickel	33.0			398	400	91.3
Silver	ND			324	400	81.0
Zinc	25.9			392	400	91.5

SR = Sample ResultSDR = Sample Dilution Result SPR = Sample Post Spike Result

SA = Spike Added

Control Limits: (+) or (-) 10% Difference or 75 - 125% Recovery

QC Sample1: 13566-001

QC Sample 1 for following samples:

13566-001; 13625-001; 13661-001~003; 13698-001

13751-001; 13752-001; 13753-001; 13754-001

INTEGRATED ANALYTICAL LABORATORIES, LLC.

METALS QUALITY CONTROL

IPC

Batch (Page) #:

534

Lab Case: 13566, 13625, 13661, 13666, 13667, 13698, 13716, 13717, 13718, 13719, 13720, 13721

13722, 13723, 13724, 13725, 13726, 13728, 13729, 13730, 13731, 13751, 13752, 13753

13754

Matrix: Aqueous

Unit: ppb (µg/L)

		BSW1	
ANALYTE	TRUE	FOUND	%R(1)
Arsenic	50.0	48.0	96.0
Cadmium	50.0	48.9	97.8
Chromium	50.0	47.8	95.6
Copper	50.0	48.8	97.6
Lead	50.0	48.5	97.0
Manganese	50.0	47.6	95.2
Mercury	2.50	2.48	99.2
Nickel	50.0	50.0	100
Silver	50.0	49.3	98.6
Zinc	50.0	49.5	99.0

(1) Control Limits = 95-105%

CHAIN OF CUSTODY

No. 13753 (Lab Use Only)

111 Howard Boulevard, Suite 108 Mount Arlington, NJ 07856 Phone: 973-398-8183

Fax: 973-398-8037

CLIENT: ST. MARY'S HOSPITAL (PBI) PROJECT NAME: R8MM

DELIVERABLES: Reduced Data Deliverables

SEND REPORT TO: Bob Lawrence E-Mail: RLawrenc@Enviro-Sciences.com

	mple ification	Sampling Location	Sample	Sampling Sample S		Sample Type		Analysis Required	# of Contain-		
Lab	Field ID	Point	Date		A M	P M	Matrix	Comp.	Grab	(code #) ers	
	SMP- 1208	Process Wastewater	12/3/08	10:00			Aqueous	X		12, 19	1

Note: PVSC Threshold Limits Required

Method of Relinquish	ment:Dro	p Off	_ 1	/ Name of La	boratory: <u>IAL</u>	
Relinquished By: (Sign):	Jy h	Received By (Sign):	Gal !	hm/	Date/Time: 13'00	
Relinquished To Lab By: (Sign):		Received F By (Sign):	or Lab	0	Date/Time:	
Analysis	Code	<u>Analysis</u>	Code	Analysis	Code	
Priority Pollutant Metals	01	Cadmium	10	Zinc	19	
Petroleum Hydrocarbons	02	Chromium	11			
Volatile Organics + 15	03	Copper				
Base Neutrals + 15	04	Lead	13			
Acid & Base / Neutrals	05	Mercury	14			
VO+15 + MTBE / TBA	06	Nickel	15			
Antimony	07	Selenium	16			
Arsenic	08	Silver	17			
Beryllium	09	Thallium	18			

Note: Report on CD NOT Required

 $\label{lem:condition} $$ \Grove\Shared\Project\ Files_NTFRS_2b3b41cb\Hospital\ Group\Custody\ Chains\Monthly\I\ month\ chain\ SMP.doc,\ 12/1/2008 $$$

PROJECT INFORMATION

Case No. Eug-13/55 Project S1. MAR	(Y'S HOSPITAL (PBI) - RSIVIM
Customer ESI, INC.	P.O. #
Contact Bob Lawrence EMail rlawrenc@enviro-sciences.com ✓ EMa Phone (973) 398-8183 Fax 1(973) 398-803'	Received 12/3/2008 13:00 ail EDDs Verbal Due 12/17/2008 7 Report Due 12/24/2008
Report To	Bill To
111 Howard Blvd	111 Howard Blvd
Suite 108	Suite 108
Mount Arlington, NJ 07856	Mount Arlington, NJ 07856
Attn: Bob Lawrence	Attn: Bob Lawrence
Report Format Reduced Additional Info State Form Field	d Sampling Conditional VOA
Lab ID Client Sample ID Dep	oth Top / Bottom Sampling Time Matrix Unit # of Containers

Sample # Tests

001 Copper - Cu

13753-001

Client Sample ID SMP-1208

Depth Top / Bottom

Sampling Time 12/3/2008@10:00 <u>Matrix</u> Aqueous <u>Unit</u> mg/L # of Containers 1

n/a

QA Method Status

In Process 200.8

" Zinc-Zn

In Process 200.8

Page 39 of 101

Integrated Analytical Labs $\sim~273$ Franklin Road, Randolph, NJ 07869 $\sim~(973)$ 361-4252 \sim Fax (973) 989-5288

December 05, 2008

SAMPLE RECEIPT VERIFICATION

CASE NO: E 08 137	53	CLIENT:	EST		
COOLER TEMPERATURE: 2°	6°C:✓	(See Chain of	Custody)		
COC: COMPLETE / INCOMP KEY = YES/NA	LETE		Comments		
 ★ = NO ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles 					
✓ Sufficient Sample Volund ✓ no-headspace/bubbles ✓ Labels intact/correct ✓ pH Check (exclude VOst ✓ Correct bottles/preservat ✓ Sufficient Holding/Prep Sample to be Subcontrate ✓	n VOs)1 tive Time'				
¹ All samples with "Analyze Immediately" holding the following tests: pH, Temperature, Free Resi ADDITIONAL COMMENTS: SAMPLE(S) VERIFIED BY:			ved Oxygen, Sulfite		mited to
CORRECTIVE ACTION REQ		YES	(SEE BELOW)	NO	
CLIENT NOTIFIED:	YES	Date/ Time:		NO [
PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED:					
ADDITIONAL COMMENTS:					
VERIFIED/TAKEN BY:	INITIAL	Ro	DATE	12-4-08	REV 02/05 0018

Laboratory Custody Chronicle

IAL Case No.

E08-13753

Client ESI, INC.

Project ST. MARY'S HOSPITAL (PBI) - R8MM

Received On 12/3/2008@13:00

Department: Metals Prep. Date **Analyst** <u>Analyst</u> Analysis Date Copper - Cu 13753-001 Aqueous 12/4/08 Lisa 12/4/08 Helge Zinc - Zn 12/4/08 -001 Aqueous Lisa 12/4/08 Helge

Review and Approval:

Page 1 of 1

Dec 09, 2008 @ 10:33

SB.

PVSC40 - 00003643

TROP DOWN BOX

FACILITY LOCATION: JASSAIC

EPA Request #: III.B.1.e.

CATEGORY & SUBPART PERMIT # 26210045

MAILING ADDRESS:

NON USE CERTIFICATION MONITORING REPORT LOCAL LIMITS

ONTACT OF					#:	,
Arsenic	uthorized to certify non-	Zinc	wing heavy met	als: SAMPI	EDATE	· / ·
Cadmium	Мегсигу			DAY	The second secon	
Chromium	Molybdenum			3	2009	
Copper $ u$			12		2009	
		,				
PARAMETER			CONCENTRATION		SA	MPLE TYPE
	(3)	RESULT	THRESHOLD VALUE EXCEEDED YES OR NO	UNITS	C	OMP/GRAB
1	Sample Measurement	0.073	. 1	m9/1		0
(U.	Threshold Value	10.092	NO	1	1	Comp.
	Sample Measurement	,	•	(-0.	793037	
	Threshold Value	,		08212		3
	Sample Measurement			150 ND		200
	Threshold Value			23.28	700	A:567
	Sample Measurement		/ :	22	All of the	897
•	Threshold Value		118192021	202	Helikali	77
	Sample Measurement	4	10	01811	1919 7181	6
	Threshold Value	13/2	Ind John Start			
	Sample Measurement	112	500g2 Nive	2		
	Threshold Value	101				
	Sample Measurement	Se Se				
	Threshold Value		2031-12348			
	Sample Measurement					
	Threshold Value					
	Sample Measurement					
*	Threshold Value					
PVSC For	m MR-3 10/96					